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Abstract

In this paper, we investigate the stability properties of a cylindrical grinding process. The dynamical model of the process

includes two inherent delayed forcing terms, one from workpiece regeneration and the other from grinding wheel

regeneration. The prediction of chatter onset is carried out by computing the spectrum of the doubly delayed differential

equations for any set of physical and operational parameters. Stability diagrams are plotted in parameter space. The

stability behavior obtained from this analysis is verified to be consistent with direct simulation results. A sensitivity analysis

approach is also proposed, and can be used to lead an unstable process to a stable state by optimally varying one of the

operational parameters.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Grinding is an abrasive process often accompanied by an unwanted instability, called regenerative chatter.
The problem of grinding chatter vibration is one of the factors that limit the productivity of many production
operations. Modeling the dynamics of grinding operations is particularly intriguing because, unlike other
machining processes, it involves significant dynamic variations in the shape of both the workpiece and the
grinding wheel [1]. Furthermore, many grinding operations involve a driven motion of both the tool and the
workpiece. This introduces a second delayed forcing term into the equations of motion of the system,
rendering even the linear stability conditions very difficult to calculate. This doubly regenerative coupled
problem has been the subject of several previous research studies [2–10]. Thompson published a series of
papers [2–5] in which the chatter growth in cylindrical grinding was investigated. In his work, the normal
grinding force between the workpiece and the tool was modeled as an exponential function of time to describe
the exponential growth or decay of the chatter amplitude. His theory and analysis can be used to adjust wheel
speed to optimize grinding time and establish a wheel dressing schedule. Recently, Yuan, Järvenpää, Keskinen
and Cotsaftis [6–9] investigated the paper machine roll grinding process to detect the main characteristics of
the system and to determine the key parameters that influence the stability. In Refs. [6–9], multi-body dynamic
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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models were established and the system behavior was analyzed by using a numerical simulation strategy. Their
simulations illustrated the influence of the delay effect on system dynamics. The Guan–Irons reduction
method has also been used by Yuan et al. [7] to uncouple the multi-degree-of-freedom model into two
separated equations. Each uncoupled equation includes only one time-delay, and traditional linear stability
theory was used to investigate the behavior of each uncoupled system separately. Orynski and Pawlowski [11]
reported the results of their work on the forced vibration damping of a wheelhead of a cylindrical grinder;
their findings were based on simulation and experimental research.

Several recent research papers have also been published on the stability analysis of multiple time delayed
dynamic systems. Bélaire and Campbell [12] considered a differential equation with two time delays and
investigated the stability and bifurcations of the equilibria in a particular system. Their approach provided an
insight into the stability regions in parameter space and the system’s dynamical evolution as one privileged
parameter is altered. Hu and Wang [13] proposed algorithms to find delay-independent stability criteria for a
single-degree-of-freedom damped vibrating system with two time delays in state feedback. A comprehensive
software package called DDE-BIFTOOL [14] is also freely available for scientific use; this Matlab package can
be used for the numerical analysis of delayed differential systems with several fixed, discrete delays. It
implements a continuation of steady-state solutions and periodic solutions as well as their stability analysis.

In this paper, we propose a practical algorithm for the stability analysis of dynamical systems with two time
delays. The stability behavior is characterized by a localization of the system eigenvalues. We then apply this
algorithm to investigate the stability behavior of a cylindrical grinding process, a doubly regenerative
differential system. Thus, both the time delays and their coupling effect are taken into account simultaneously
in the analysis. The main aim of the research reported in this paper was to locate the parameter values at the
onset of the chatter vibration in the cylindrical grinding process. The remainder of this paper is structured as
follows. The dynamical model with two time delays for the grinding process is briefly described in Section 2. In
Section 3, the time-domain response obtained from the numerical integration of the system equations for
stable or unstable motions, with and without perturbations (i.e. surface irregularities of the workpiece and the
grinding wheel) is shown. The numerical method for analyzing stability by computing the eigenvalues of the
autonomous system (using a labeling of the complex plane) is given in Section 4. In Section 5, stability
diagrams are plotted using the method proposed in Section 4. In Section 6 is a description of how it may be
possible to bring an unstable system to a stable state as quickly as possible by properly adjusting the
operational parameters. We conclude finally with some general remarks on our contributions and on the
usefulness of these concepts in the stability characterization of a cylindrical grinding process.
2. Mathematical model of the grinding process

The dynamics of a roll grinding process [6] is considered here. The workpiece ðwÞ is a long cylindrical roll
(mass mw) rotating at a constant angular speed, ow. The grinding wheel mechanism (mass mg) is attached to a
sledge parallel to the roll axis and pushed against the roll by a cutting force F N (see Fig. 1). The grinding wheel
kw

cw

kg

cg

xg
ogow xw

FNFN

gw

mw mg

Fig. 1. Dynamic model of roll grinding operation [1].
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rotates at a high speed, og, and also moves horizontally along the roll at a slow translational speed, vg. The
whole system may be described through an equivalent spring-mass model [1] illustrated in Fig. 1, which obeys
the following differential equations:

mg €xg þ cg _xg þ kgxg ¼ F N ,

mw €xw þ cw _xw þ kwxw ¼ �F N . ð1Þ

In this paper, the grinding model described in Ref. [7] for the normal contact force F N at the grinding point is
used:

F NðtÞ ¼ kN ð½�wðtÞ � a�wðt� twÞ� � ½�gðtÞ � �gðt� tgÞ�Þ, (2)

where kN is a contact stiffness between the roll and the grinding stone ð�g; �wÞ are, respectively, the depths of
penetration into the grinding wheel and into the roll and

a ¼ 1� 2p
vg

Wow

, (3)

is an overlapping factor related to the width W of the wheel.
In some circumstances, which will be described below, the grinding operation may lose its stable

behavior and begin to ‘‘chatter’’, leading to an undesirable surface finish and a tool life shortening.
In regenerative feedback theory [2] it has been shown that the two time delays, tg ¼ 2p=og and tw ¼ 2p=ow

play a major role in the onset of chatter. Let us remark here that og4ow, such that tgotw.
As indicated in Ref. [7], sinusoidal error patterns exist on the surfaces of the roll and of the

grinding wheel. This sinusoidal defect on the workpiece is made of nw waves of amplitude DR,
such that the depth of penetration into the workpiece is related to the roll displacement, xwðtÞ, by the
equation

�wðtÞ ¼ xwðtÞ � DR sinðnwowtÞ þ xf w
. (4)

Assuming the same error pattern (amplitude Dr) on the grinding wheel, and taking into account the direction
of the x-axis and the opposite rotation of the grinder, the corresponding depth of penetration into the grinding
wheel is computed by

�gðtÞ ¼ xgðtÞ þ Dr sinðp� ngog tÞ þ xf g
. (5)

In these expressions, xf g
and xf w

stand for the constant cutting feed applied to the grinder and to the
workpiece, respectively. Then, the contact force may be written as

F NðtÞ ¼ kN ½xwðtÞ � xgðtÞ� � kN ½axwðt� twÞ � xgðt� tgÞ�

� kNDR½sinðnwowtÞ � a sinðnwowðt� twÞÞ� ð6Þ

� kNDr½sinðp� ngogtÞ � sinðp� ngogðt� tgÞÞ�

þ kN ð1� aÞxf w
.

Let us associate Index 1 to the grinding wheel ðgÞ and Index 2 to the workpiece ðwÞ. The two time delays ðt1; t2Þ
occurring in the differential system are now t1 ¼ tg ¼ 2p=og; t2 ¼ tw ¼ 2p=ow, with t1ot2. We define the
state vector yðtÞ by yðtÞ ¼ ðx1 x2 _x1 _x2Þ

t.
The differential system becomes _yðtÞ ¼ fðyðtÞ; yðt� t1Þ; yðt� t2Þ; t; gÞ or, more precisely,

_yðtÞ ¼ A0ðgÞyðtÞ þ A1ðgÞyðt� t1Þ þ A2ðgÞyðt� t2Þ þ pðt; gÞ þ CðgÞ, (7)
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where

A0 ¼

0 0 1 0

0 0 0 1

�
k1 þ kN

m1

kN

m1
�

c1

m1
0

kN

m2
�

k2 þ kN

m2
0 �

c2

m2

0
BBBBBBBBB@

1
CCCCCCCCCA
,

A1 ¼

0 0 0 0

0 0 0 0

kN

m1
0 0 0

kN

m2
0 0 0

0
BBBBBBBBB@

1
CCCCCCCCCA
; A2 ¼

0 0 0 0

0 0 0 0

0 �
a kN

m1
0 0

0
a kN

m2
0 0

0
BBBBBBBBB@

1
CCCCCCCCCA
,

p ¼ fp1; p2; p3; p4g
t

where

p1 ¼ 0; p2 ¼ 0,

p3 ¼ �
kN

m1
fDr½sinðp� ngogtÞ � sinðp� ngogðt� t1ÞÞ�

þ DR½sinðnwowtÞ � a sinðnwowðt� t2ÞÞ�g,

p4 ¼
kN

m2
fDr½sinðp� ngogtÞ � sinðp� ngogðt� t1ÞÞ�

þ DR½sinðnwowtÞ � a sinðnwowðt� t2ÞÞ�g,

and

C ¼ fC1;C2;C3;C4g

where

C1 ¼ 0; C2 ¼ 0; C3 ¼ ð1� aÞ
kN

m1
xf w

; C4 ¼ �ð1� aÞ
kN

m2
xf w

.

3. Stable and unstable states

In a first step, the differential system Eq. (7) is integrated in the time domain by a Runge–Kutta method of
order 4 to illustrate the stable and unstable behaviors of the system. The numerical values of the physical
parameters given in the appendix correspond to a typical roll grinding system [7]. The motions, x1ðtÞ and x2ðtÞ,
are set to zero for �t2ptp0 and the load FN ðtÞ applied afterwards for t40. The grinding wheel is operated at
a frequency of 10Hz ðog ¼ 62:83 rad=sÞ, and is moving along the roll at a speed, vg ¼ 0:0105m=s.

In Eqs. (4) and (5), sinusoidal error patterns are assumed to be present on the surfaces of the workpiece and
grinding wheel. We used DR and Dr to denote, respectively, the amplitude of the error waves for the workpiece
and the grinding wheel. These surface imperfections exist inevitably in the material to be ground and in the
grinder. In what follows, we will illustrate the system dynamical response in the time domain for two cases: the
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Fig. 2. Perturbed evolution: (a) stable and (b) unstable behavior.
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perturbed system in which we assume that DR and Dr are nonzero and the unperturbed system in which there is
no surface imperfection (DR ¼ 0 and Dr ¼ 0). In both cases, the system can become unstable when the
workpiece rotational speed is set beyond a critical value.
3.1. Perturbed system ðDR;Dra0Þ

Depending on the rotational velocity of the roll, the system may exhibit stable oscillations or may enter into
a vibratory mode of ever increasing amplitude. In Fig. 2(a), the evolution of the grinder displacement x1ðtÞ for
a value of ow ¼ 1:1 rad=s, corresponding to smooth grinding behavior is shown. For a small increase in the
roll rotational speed to ow ¼ 1:2 rad=s, the amplitude of this oscillating displacement increases exponentially
(Fig. 2(b)). This is in accord with the Thompson’s chatter theory [2], where an exponentially increasing contact
force FN ðtÞ is associated with the onset of chatter. The contact force and the lateral vibration of the grinder
behave similarly, as they are related by Eq. (1).
3.2. Unperturbed system ðDR;Dr ¼ 0Þ

The unstable mode which appears in this case is not a consequence of growing surface irregularities, but is
rather a cause of the exponential increase of these defects. The numerical integration of the same grinding
system acting on perfectly rounded surfaces gives the results of Fig. 3, (a) for the stable case and (b) for the
unstable one. It is noted that the scales of the vertical axes in Fig. 3(a) and (b) are different in order to show
the oscillating behavior of the stable response clearly. The peak values of the unstable case can be extracted
from the data, and a least-squares algorithm combined with a deferred correction to the limit is applied on
these values in order to estimate the exponential rate of increase of the envelope at t ¼ 100s. This process gives
Envðjx1ðtÞjÞ � x1;0 e

at with a ¼ 5:05� 10�2; x1;0 ¼ 7:6� 10�6: The curve Envðjx1ðtÞjÞ is plotted in
Fig. 3(b). In fact, we have found that, at least for this particular set of system parameters, this exponential
rate of increase is directly related to the eigenvalues of the system as described later in Section 5.

One can notice that the system responses illustrated in Figs. 2(b) 3(b) correspond to unstable cases where the
behavior is purely exponential without saturation. In reality, the nonlinearities can bring an effect of saturation which
limits the vibration amplitude to a finite value. However, the model Eq. (7) under study in this work is linear in terms
of system state variables and the forcing terms, even nonlinear, will not cause an effect of saturation.



ARTICLE IN PRESS

0 20 40 60 80 100

0

1

–1

x 10–4

t (s)

x 1
(t

)

0 20 40 60 80 100

0

0.2

–0.2

–0.4

–0.6

–0.8

–1

0.4

0.6

0.8

1

x 10–3

t (s)

x 1
(t

)

a b

Fig. 3. Unperturbed evolution: (a) stable and (b) unstable behavior.
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4. System stability and eigenvalues

A stability analysis of the doubly delayed differential system is carried out in this section in order to
precisely detect the onset of chatter for the case of the autonomous differential system:

dy

dt
¼ A0yðtÞ þ A1yðt� t1Þ þ A2yðt� t2Þ. (8)

Let us introduce the complex matrix ÂðlÞ computed by

ÂðlÞ ¼ A0 þ A1 e
�t1l þ A2 e

�t2l. (9)

Then, the characteristic equation of the delayed differential system of Eq. (8) is expressed by

DðlÞ ¼ det½lI� ÂðlÞ�. (10)

In this particular case, the matrix lI� ÂðlÞ is not highly populated, and so this determinant can be easily
computed:

DðlÞ ¼ l4 þ y1l
3
þ y2ðlÞl

2
þ y3ðlÞlþ y4ðlÞ (11)

with

y1 ¼
m1c2 þm2c1

m1m2
,

y2 ¼
m1ðk2 þ kNÞ þm2ðk1 þ kNÞ þ c1c2

m1m2
�

kN

m1
e�t1l �

akN

m2
e�t2l,

y3 ¼
c1ðk2 þ kN Þ þ c2ðk1 þ kN Þ

m1m2
�

c2kN

m1m2
e�t1l �

ac1kN

m1m2
e�t2l,

y4 ¼
k1k2 þ k1kN þ k2kN

m1m2
�

k2kN

m1m2
e�t1l �

ak1kN

m1m2
e�t2l. ð12Þ

The eigenvalues of the delayed differential system are given by the roots of the function DðlÞ. These roots
are known to be of finite multiplicity with upper bounded real parts. They appear in conjugate pairs that are
symmetrical with respect to the real axis. For the system to be stable, all the eigenvalues must lie in the left-
hand side part of the complex plane (the real parts must be negative). The localization of these eigenvalues can
be achieved by a numerical method based on the labeling of a bounded region in the complex plane [15,16], as
briefly explained next.
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Let f ðzÞ denote an entire function of z. Define Lz, the label of z, as

Lz ¼

1 for� p=3p argðf ðzÞÞpp=3 or if f ðzÞ ¼ 0;

2 forp=3o argðf ðzÞÞpp;

3 for� po argðf ðzÞÞo� p=3:

8><
>: (13)

Let ðz1; z2; z3Þ be a triple of complex numbers. An edge ðzi; zjÞ is said to be distinct if Lzi
aLzj

. A triangle with
three distinct edges is said to be saturated, which implies that the set fLz1 ;Lz2 ;Lz3g is identical to f1; 2; 3g. The
continuity property of the function f ensures that �-small saturated triangles can only be found near a zero of f.
Hence, the problem of finding the zeros of f ðzÞ in a given bounded region can be tackled by constructing a
subdivision of the region into triangles and finding the saturated ones.

In practice, one takes a rectangular region B and constructs a grid. The mesh points of the grid are then
searched for saturated triples of neighbors. Searching all the points of the grid would result in an Oðn2Þ

algorithm, and this may be avoided by remarking that a triangle cannot have only one distinct edge, and
proceeding along the following steps:

Step 1: A rectangular region B and a mesh size are chosen. A starting point on the boundary of B is chosen.
Step 2: The algorithm advances along the boundary of B, computing Lz at each mesh point of the boundary.

The pairs of distinct points are stored along with a direction n! pointing towards the interior of B. This
continues until the algorithm returns back to the starting point.

Step 3: For each triple ðz1; z2; n!Þ, with ðz1; z2Þ being consecutive distinct mesh points on the boundary of B,
the algorithm finds another mesh point z3 inside B, obtained by moving one step from z2 (on the horizontal
sides) or from z1 (on the vertical sides) in the direction n!, and computes the value Lz3 .

Step 4: This triangle has at least one distinct edge ðz1; z2Þ. If the two other edges are also distinct, a saturated
triangle has been found. Otherwise, the algorithm picks up the distinct edge which is not ðz1; z2Þ and a new
direction n! as a basis for a new triangle inside B to consider. Thus, the algorithm will proceed along the
boundary of two zones associated with two different values, Lz, until either a saturated triangle has been
found or a boundary of B is reached again. In the latter case, the next triple ðz1; z2; n!Þ on the boundary is
picked up and the search continues until all zone boundaries have been traversed.

In the next stage, the algorithm proceeds to a subdivision of saturated triangles by bounding them with
rectangles onto which the same algorithm is reapplied. This subdivision is performed several times, until a
desired accuracy of approximation is obtained. The centers of saturated triangles then serve as starting points
for a refinement via Newton’s method.
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The roots of the function DðlÞ are plotted in Fig. 4 for the two cases of references described in the last
section. The localization of these eigenvalues corroborates the numerical simulations: the stable case (for
ow ¼ 1:1) corresponds to eigenvalues entirely in the left part of the complex plane. Unstable situations (as for
ow ¼ 1:2) occur when one or more eigenvalues have crossed the imaginary axis. A close look at the region
enclosing the critical eigenvalues for these two cases is presented in Fig. 5. A remark of interest is that this
crossing always occurs at or close to a specific value of the imaginary part, corresponding to a sort of critical
vibration frequency (340=6:28 � 54Hz for the set of physical parameters used in this paper).

In the unstable case (b), there are four eigenvalues on the right part of the complex plane, each of which
contributes to the exponential increase of the signal amplitude. The sum of the four real parts ðS ¼
2:48� 10�2 þ 2:27� 10�2 þ 7:8� 10�3 þ 2:36� 10�3 ¼ 5:77� 10�2Þ is close to the value of the Thompson’s
index a approximated in Section 3.

5. Stability diagrams

During the grinding process, the operator can control the parameters ow and og that are associated with the
rate of rotation of the workpiece and of the tool as well as the feed velocity vg and the depth of cut. However,
in the present model, the depth of cut is not used in the computation of the system eigenvalues and as a
consequence, cannot be used as a control parameter. Therefore, the three parameters ðow;og; vgÞ are the only
parameters that can be controlled. Eq. (3) relates the parameters ow and vg to the overlapping coefficient a.
This coefficient must satisfy 0pao1 as vg must be greater than 0 (the roll length is much greater than the
grinder width), and because all the parts of the roll must be touched by the grinder, vg cannot be ‘‘too large’’ or
ow ‘‘too small’’; they must also obey the constraint Wow=vg42p.

In this section, we determine the domain of stability of the retarded differential system numerically in the
parameter space ðow;og; vgÞ. That is done in the following manner: For given values of the three control
parameters, let lc be the rightmost eigenvalue, and define the real function F by F ðow;og; vgÞ ¼ ReðlcÞ (largest
real part of the eigenvalues). The shape of the surface F ¼ 0 in the control parameter space will be investigated
by drawing sections of this surface in the planes vg ¼ C. Keeping vg at a fixed value, the parameter, og,
successively takes all the values in the range ½30; 90� separated by an increment, Dog ¼ 1. For each of these
values, the equation Fvg;og

ðowÞ ¼ 0 is solved by using the bisection method. In Fig. 6 the stability boundary,
ow ¼ f ðogÞ, is plotted for vg ¼ 0:01m=s, together with the lower limit, ow;min ¼ 2pvg=W . For this value of vg,
the operational parameters ðow;ogÞ must be kept within the shaded region.

Such sections may be computed for a series of vg values, and the points ðow;og; vgÞ are then connected to
give the spatial curves appearing in Fig. 7. On this figure, the curves represent the upper limit of ow for the
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stability, and the horizontal lines represent the lower admissible value to ensure grinding overlap. In order to
grind all parts of the roll without chatter, the system must operate within the region situated above the
constraint plane, and below the stability surface.

It can also be seen that the imaginary part of the critical eigenvalues does not depend on the feed velocity vg.
These critical eigenvalues cross the imaginary axis at a height restricted to the range ½310; 370� for all the values
taken by og (see Fig. 8). This is in accord with previous observations [17] reported in the literature.
In Ref. [18], the authors have used this remark to design a chatter monitoring system based on the detection
of this critical frequency.
6. Sensitivity analysis on control parameters

In this section, we present an analysis which could enable the setting up of a strategy to prevent the onset of
chatter or, in the case where this unstable behavior appears, to bring it to its extinction.

Let us consider a critical situation (stable or unstable) in which the critical eigenvalue lc is located close to
the imaginary axis. We want to develop a strategy to apply to the control parameters to ensure that this
eigenvalue will move towards the left part of the complex plane, which will result in bringing the mechanical
system back into a smooth grinding situation. The control parameters ðow;og; vgÞ do not explicitly appear in
the coefficients of the system of Eq. (8); however, their expressions may be used directly in Eqs. (11) and (12):

t1 ¼
2p
og

; t2 ¼
2p
ow

; a ¼ 1�
2pvg

Wow

, (14)

which may be re-written as

yiðlcÞ ¼ Ti;0 þ Ti;1m1 þ aTi;2m2,

m1 ¼ exp �
2p
og

lc

� �
,

m2 ¼ exp �
2p
ow

lc

� �
; ð15Þ

where Ti;j denote physical values not related to the three control parameters. Let us then evaluate the influence
of the parameter ow on the critical eigenvalue lcðowÞ. Differentiating the identity Dðlc;owÞ ¼ 0, we obtain

qD
ql

dlc þ
qD
qow

dow ¼ 0)
dlc

dow

¼ �
qD
qow

�
qD
ql

. (16)

We then first compute

qD
ql
¼ 4l3c þ 3y1l

2
c þ 2y2lc þ y3 �

X4
i¼2

½t1Ti;1m1 þ at2Ti;2m2�l
4�i
c (17)

and in a second step

qD
qow

¼
X4
i¼2

dyi

dow

l4�i
c ¼ 2p

m2
o2

w

vg

W
þ alc

h iX4
i¼2

Ti;2l
4�i
c . (18)

In a similar manner, we may obtain

dlc

dog

¼ �
qD
qog

�
qD
ql

,

qD
qog

¼
X4
i¼2

dyi

dog

l4�i
c ¼ 2p

lcm1
o2

g

X4
i¼2

Ti;1 l
4�i
c , ð19Þ
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and

dlc

dvg

¼ �
qD
qvg

�
qD
ql

,

qD
qvg

¼
X4
i¼2

dyi

dvg

l4�i
c ¼ �2p

m2
Wow

X4
i¼2

Ti;2l
4�i
c . ð20Þ

Let us take the reference case previously used as a numerical example: ow ¼ 1:1;og ¼ 62:83 and
vg ¼ 0:0105. For these values, the system is close to chatter as the critical eigenvalue lc ¼ �0:0142þ i359:39.
The computation of derivatives results in

dlc

dow

¼ 0:438� i8:85,

dlc

dog

¼ �0:01275� i12:56,

dlc

dvg

¼ �51:72� i0:174.

The signs of these derivatives tell us that for lc to move to the left, we must decrease ow, or increase og or vg.
Let us modify each of these control parameters independently by a 5% factor. Then, the real part of lc will
decrease accordingly:

dRe½lcð0:95owÞ� ¼ �0:024,

dRe½lcð1:05ogÞ� ¼ �0:040,

dRe½lcð1:05vgÞ� ¼ �0:027.

In this example, the best strategy would be to increase the grinder’s rotational velocity, og. The other best
control strategies would involve increasing the linear velocity vg or decreasing the roll rotation ow. However,
each of these actions would also decrease a: to satisfy the overlapping constraint, the new values vn

g or o
n
w must

be bound by the inequalities

vn
gpfvg or on

wX
1

f
ow, (21)

where

f ¼
Wow

2pvg

.

In practice, this sensitivity analysis could be useful for setting up a method for online chatter monitoring
and control.

7. Conclusion

We have presented a systematic approach for the stability analysis of a doubly regenerative cylindrical
grinding process. It is known that such a dynamic system with two time delays possesses an infinite number of
eigenvalues. We developed an efficient numerical method to locate the rightmost eigenvalue (lc) of the system
in the complex plane. When lc is close to the imaginary axis, its real part indicates the stability state of the
system as its imaginary part is related to the chatter frequency. Moreover, the real part of lc can be easily
related to the chatter growth index introduced by Thompson [3]. Compared to previous research on the kind
of system studied here, our approach has the capability of capturing stability characteristics in parameter
space directly from the spectrum without using the time-domain response. By using the relationship between
the critical eigenvalue and the system parameters, we also conducted a sensitivity analysis in an attempt to find
the best control strategy for returning an unstable process to a stable one by varying one of the operational
parameters.
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Appendix

The following nominal values of the physical parameters of the grinding process are used throughout this
paper:

m1 ¼ 700 ðkgÞ; m2 ¼ 400 ðkgÞ,

c1 ¼ 6:0� 104 ðNs=mÞ; c2 ¼ 3:75� 104 ðNs=mÞ,

k1 ¼ 4:0� 107 ðN=mÞ; k2 ¼ 2:5� 107 ðN=mÞ,

kN ¼ 1:6� 107 ðN=mÞ; W ¼ 0:08 ðmÞ,

DR ¼ 2:0� 10�4 ðmÞ; Dr ¼ 1:0� 10�4 ðmÞ,

nw ¼ 10; ng ¼ 10,

xf w
¼ 1:0� 10�6 ðmÞ.

The rotational and axial velocities of the reference case correspond to

vg ¼ 0:0105 ðm=sÞ; og ¼ 62:83 ðrad=sÞ; ow ¼ 1:1 ðrad=sÞ.
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[6] L. Yuan, V.-M. Järvenpää, E. Keskinen, M. Cotsaftis, Simulation of roll grinding system dynamics with rotor and speed control,

Communications in Nonlinear Science and Numerical Simulation 7 (2002) 95–106.
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[12] J. Bélaire, S.A. Campbell, Stability and bifurcations of equilibria in a multiple-delayed differential equation, SIAM Journal on Applied

Mathematics 54 (5) (1994) 1402–1424.

[13] H.Y. Hu, Z.H. Wang, Stability analysis of damped SDOF systems with two time delays in state feedback, Journal of Sound and

Vibration 214 (2) (1998) 213–225.

[14] K. Engelborghs, T. Luzyanina, D. Roose, Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL,

ACM Transactions on Mathematical Software 28 (1) (2002) 1–21.



ARTICLE IN PRESS
Z. Liu, G. Payre / Journal of Sound and Vibration 301 (2007) 950–962962
[15] A. Manitius, H. Tran, G. Payre, R. Roy, Computation of eigenvalues associated with functional differential equations, SIAM Journal

on Statistical Computation 8 (3) (1987) 222–246.

[16] Z. Liu, G. Payre, P. Bourassa, Stability and oscillations in a time-delayed vehicle system with driver control, Nonlinear Dynamics 35

(2) (2004) 159–173.

[17] B.R. Hardwick, Identification and solution of chatter vibration on roll grinding machines, Iron and Steel Engineer (July) (1994) 41–46.

[18] E. Govekar, A. Baus, J. Gradisek, F. Klocke, I. Grabec, A new method for chatter detection in grinding, CIRP Annals STC G, 51/1/

2002 (2002) 267–270.


	Stability analysis of doubly regenerative cylindrical �grinding process
	Introduction
	Mathematical model of the grinding process
	Stable and unstable states
	Perturbed system (Delta R,Delta r 0)
	Unperturbed system (Delta R,Delta r=0)

	System stability and eigenvalues
	Stability diagrams
	Sensitivity analysis on control parameters
	Conclusion
	Acknowledgments
	Appendix
	References


